YRERFS GIS WORKFLOW AND MODELING PROCESS

Presenter Name

Presenter Title

SPK Sacramento

7/12/2017

US Army Corps of Engineers BUILDING STRONG®

YRERFS Juvenile Steelhead Habitat Determination

Original Data Sets

tree_object_classification (Riparian Scrub/ Riparian Forest)

- AllCobbles_5000
- LYRriprapHBD
- LYRbedrock

Data provided by HDR Originally WSI Vegetation analysis, 2010

Create Cover Raster

WITHOUT PROJECT CONDITIONS (FWOP)

Note: the following additional data layers were provided by the KMT for calculating WUA for these cover versions: LYR_Bedrock_boulder_cover.shp, LYR_riprap_HBD.shp, cobble_5k,lrgcobb_5k, Boulder_5000 and LYR5000_streamwood.shp.	Method	Process	Output	Cell Size	Format	Value
CREATE "AllCobbles_5000"—Combine "cobble_5k" and "Irgcobb_5k" rasters by doing an addition function. Each pixel contains a percentage of the pixel that contains cobble, so by adding the two cobble size classes together a total percentage of area within the pixel that's cobble was calculated.	MATH	cobble_5k+lrgcobb_5k=AllCobbles_5000	AllCobbles_5000	3x3	Float32	%Cobble
CREATE "LYRriprapHBD"—Converted the file "LYR_riprap_HBD.shp" containing polygons to a raster format with 3ft x 3f pixels.	t Feature to Raster	LYR_riprap_HBD.shp to LYRriprapHBD	LYRriprapHBD	3x3	Float32	1=RipRap
CREATE "LYRbedrock"—Converted the file "LYR_Bedrock_boulder_cover.shp" containing polygons to a raster format with 3ft x 3 ft pixels.	Feature to Raster	LYR_Bedrock_boulder_cover.shp to LYRbedrock	LYRbedrock	3x3	Float32	1=Bedrock
CREATE "LYR_Boulder_presence"—For a given pixel within the raster "Boulder_5000" that was greater than 9 the outpu pixel would be 1; otherwise it was zero.	t Raster Reclass	boulder_5k to LYR_Boulder_presence	LYR_Boulder_presence	3x3	Float32	1=Boulder
Cover Version – Steelhead (O. mykiss) juvenile Note: The following additional data sources were used: "LYR_veg_only_dissolve", "LYR5000_wettedarea_dissolved.shp", "LYR_streamwood.shp".	Method	Process		Cell Size	Format	Value
CALCULATE SHSI—If AllCobbles_5000 is less than 30% of a given pixel then the SHSI is .3; otherwise it's .5.	Raster Calc	AllCobbles_5000 <30=.3 and >30=.5	SHSI_AllCobbles_5000	3x3	Float32	<30=.3 >30=.5
CALCULATE LYR_hardcover_OMYjuv_HSI—For a given pixel if the sum of "LYRriprapHBD", "LYRbedrock" and "LYR_Boulder_presence" is greater than zero then the output pixel value is .5; otherwise .3.	Mosaic/Raster Calc	LYRriprapHBD+LYRbedrock+LYR_Boulder_pr esence	LYR_hardcover_OMYjuv_HSI	3x3	Float32	1=.5
CALCULATE LYR_veg_OMYjuv_HSI—Polygons representing areas of vegetation taller than 2' were buffered by 3 feet and assigned a value of 1. Areas within the 5000 cfs wetted area that were not within the 3 foot buffered vegetation polygons were assigned a value of .3.	Raster Calc	HeightClass=3ftBuffTree=1 and Shrub=.3	LYR veg OMYjuv HSI	3x3	Float32	Tree=1 Shrub=.3
CALCULATE LYR_SW_OMYjuv_HSI—Polygons representing areas of streamwood were buffered by 6 feet and assigned a value of 1. Areas within the 5000 cfs wetted area that were not within the 3 foot buffered vegetation polygons were assigned a value of .3.	Feature to Raster	6ftBuffSW=1	LYR SW OMYiuv HSI	3x3	Float32	SW=1
CALCULATE COMBINED HSI—Overlaying the SHSI, hardcover HSI, streamwood HSI and vegetation HSI rasters and looking at one pixel location at a time the output for that pixel location was whichever of the four inputs had the highest value.	Mosaic	SHSI+ hardcover HIS+streamwood HIS+vegetation	COMBINED_HSI	3x3	Float32	Heighest

Data provided by HDR Originally WSI Vegetation analysis, 2010

Create Cover Raster

Create Cover Raster

U.S.ARM

MODIFY COVER RASTER FOR FWOP

- Cover Raster missing data at Timbuctoo Bend
- Modify Cover Raster(Raster's Measures Feature to Raster)
 - Side Channel
 - Back Water
 - Riparian Planting
 - Floodplain Lowering
- Assign Habitat Units to Measures Raster's
 - .3 Side Channel
 - .3 Back Water
 - .5 Riparian Planting
 - .5 Floodplain Lowering
- Mosaic to Existing Riverine Cover Raster

FWOP_COMBINED_HSI

Build Raster for missing data at Timbuctoo Bend

Feature to Raster

BackWaterCoverRaster LoweringCoverRaster SideChannelCoverRaster PlantingCoverRaster

Cover (reclass by table)	
Cover_class	SI value
boulder/riprap	0.5
cobble	0.5
none	0.3
riparian vegetation	1
stream wood	1

Reclassify Rasters

FWOP_BackWater_HSI FWOP_Lowering_HSI FWOP_Planting_HSI FWOP_SideChannel_HSI

FWOP_Timbuctoo_HSI

Cover (reclass by table)	
Cover_class	SI value
boulder/riprap	0.5
cobble	0.5
none	0.3
riparian vegetation	1
stream wood	1

FWOP_Timbuctoo_HSI

(Back Water and Side Channels in Missing Data Area at Timbuctoo Bend)

*Only areas within FWP footprint added to FWOP (existing) conditions

COMBINED_HSI

FWOP_COMBINED_HSI

FWOP SI COVER

Create FWOP Cover Raster

MODIFY COVER RASTER FOR FWP

- Create project condition (Raster's Measures Feature to Raster)
 - Side Channel
 - Back Water
 - Riparian Planting
 - Floodplain Lowering
- Assign Habitat Units to Measures Raster's
 - .5 Side Channel
 - .5 Back Water
 - 1 Riparian Planting
 - 1 Floodplain Lowering

Mosaic to Existing Riverine Cover Raster

Build Raster for missing data at Timbuctoo Bend

Feature to Raster

BackWaterCoverRaster LoweringCoverRaster SideChannelCoverRaster PlantingCoverRaster

Cover (reclass by table)	
Cover_class	SI value
boulder/riprap	0.5
cobble	0.5
none	0.3
riparian vegetation	1
stream wood	1

Reclassify Rasters

FWP_BackWater_HSI FWP_Lowering_HSI FWP_Planting_HSI FWP_SideChannel_HSI

FWOP_Timbuctoo_HSI

		Cover (reclass by table)		
		Cover_class	SI value	
	\sim /	boulder/riprap		0.5
		cobble		0.5
COMBINED				
		none		0.3
and the second se		riparian vegetation		1
the second s		stream wood		1
A CONTRACT OF				
Less.				
and the second se				
5		Habitat Values of 5 added to Back W	Vater and Side	
		Channel areas in order to		
		Represent Cobble Cover in FWP cor	nditions.	
	(Back Water			
	and Side Channele)			
	and Side Channels)			
	s 🖍			
		F	WP SI COVER	
		ST		
(Elecateloin Lowering				
(Floodplain Lowening		•		
and Rinarian Planting))	
and rupanan rianting)				
		n	<u></u>	
		V		
1		States I		
	a la contra de la co			
Habitat Values of 1 added to Flood	lain Lowering			
and Riparian Planting areas in orde	r to			
Represent Cobble Cover in FWP co	onditions.		WwwW	

U.S.ARMY

Create FWP Cover Raster

Raster Reclass Depth

Depth (feet)	Suitability Index Value
0.4	0
0.5	0.45
1.6	0.9
2	0.98
2.2	1
2.5	0.94
35	0.84
5.5	0.32
6.5	0.17
8	0.07
9.5	0.04
10.5	0.03
13.5	0.03
15	0.04
15.1	0

=DepthWith750SI, DepthWithOut750SI DepthWith1850SI, DepthWithOut1850SI, DepthWith5000SI, DepthWithOut5000SI

Raster Reclass Velocity

Velocity (feet/second)	Suitability Index Value
0.00	1.00
0.10	1.00
0.20	0.99
0.30	0.98
0.40	0.97
0.50	0.96
0.60	0.94
0.70	0.92
0.80	0.89
0.90	0.87
1.00	0.84
1.10	0.81
1.20	0.78
1.30	0.74
1.40	0.71
1.50	0.67
1.60	0.63
1.70	0.60
1.80	0.56
1.90	0.52
2.00	0.48
2.10	0.45
2.20	0.41
2.30	0.38
2.40	0.34
2.50	0.31
2.55	0.30
4.00	0.00

=VelocityWith750SI, VelocityWith1850SI, VelocityWith5000SI, VelocityWithOut750SI, VelocityWithOut1850SI, VelocityWithOut5000SI

Create Final Cover HSI Raster's

8 CALCULATE CHSI— For each flow for a given pixel the output value for that pixel is the cubic root of the product of the VHSI, DHSI and Combined HSI at that location.

Juvenile Steelhead AKA Riverine FWOP HSI RASTER = (SI_{depthFWOP} x SI_{velocityFWOP} x SI_{coverFWOP})^{1/3} Juvenile Steelhead AKA Riverine FWP HSI RASTER = (SI_{depthFWP} x SI_{velocityFWP} x SI_{coverFWP})^{1/3}

=FWOP_Riverine750_HSI, FWOP_Riverine1850_HSI, FWOP_Riverine5000_HSI,

 Value

 <= 0.1</td>

 <= 0.5</td>

 <= 1</td>

FWP_Riverine750_HSI, FWP_Riverine1850_HSI, FWP_Riverine5000_HSI

To refine results of the HSI and make it pertinent to the areas where measures are, a new layer was created to clip out the needed features. The layer, "Units", has a north-south boundary based on the 84,000 cfs flow boundary and an east west boundary of 500 feet off either end of the widest measure in each measure grouping. There are 9 units total.

All 9 units were used to clip the FWP and FWOP HSI rasters.

=FWOP_Riverine750_HSI_U1 through U9, FWOP_Riverine1850_HSI_U1 through U9, FWOP_Riverine5000_HSI_U1 through U9, FWP_Riverine750_HSI_U1 through U9, FWP_Riverine1850_HSI_U1 through U9, FWP_Riverine5000_HSI_U1 through U9

Unit 1: 1850 cfs flow boundary clipped out

X54 By-Units HIS Rasters

To calculate actual Habitat Units (end product) need to create a table for each raster. To create a table use the Zonal Statistics tool and input the rasters you want to create a table for.

Contents Preview Description

EE FWP_yr1_Basal_HSI_750cfs_Unit6

FWP_yr1_Basal_HS1_750cfs_Unit7

FWP_yr1_Basal_HS1_750cfs_Unit8

FWP_yr1_Basal_HSI_750cfs_Unit9

	Name	Туре
	FWP_yr1_Basal_HSI_1850cfs_Unit1	File Geodatabase Table
	FWP_yr1_Basal_HSI_1850cfs_Unit2	File Geodatabase Table
	FWP_yr1_Basal_HSI_1850cfs_Unit3	File Geodatabase Table
8 Units Rasters to Table (Zonal Statistics)	FWP_yr1_Basal_HSI_1850cfs_Unit4	File Geodatabase Table
9 Add HSI Field	FWP_yr1_Basal_HSI_1850cfs_Unit5	File Geodatabase Table
	FWP_yr1_Basal_HSI_1850cfs_Unit6	File Geodatabase Table
10 Sum from Zonal Statastics *9	FWP_yr1_Basal_HSI_1850cfs_Unit7	File Geodatabase Table
11 Add Name Field	FWP_yr1_Basal_HSI_1850cfs_Unit8	File Geodatabase Table
import cropy	FWP_yr1_Basal_HSI_1850cfs_Unit9	File Geodatabase Table
import arcpy	FWP_yr1_Basal_HSI_5000cfs_Unit1	File Geodatabase Table
from arcpy import env	FWP_yr1_Basal_HS1_5000cfs_Unit2	File Geodatabase Table
env.workspace = r"D:\USACE	FWP_yr1_Basal_HSI_5000cfs_Unit3	File Geodatabase Table
Projects\YubaRiverEcosystemRestoration\GDB\Scratch adb"	FWP_yr1_Basal_HSI_5000cfs_Unit4	File Geodatabase Table
for table in grapy (intTables/"*");	FWP_yr1_Basal_HSI_5000cfs_Unit5	File Geodatabase Table
for table in arcpy.List fables():	FWP_yr1_Basal_HSI_5000cfs_Unit6	File Geodatabase Table
name = table.split(".")[0]	FWP_yr1_Basal_HS1_5000cfs_Unit7	File Geodatabase Table
arcpy.AddField management(table, "Name", "TEXT")	FWP_yr1_Basal_HSI_5000 cfs_Unit8	File Geodatabase Table
arcpy CalculateField_management(table_"Name"_"" + name + ""	FWP_yr1_Basal_HS1_5000cfs_Unit9	File Geodatabase Table
	FWP_yr1_Basal_HS1_750cfs_Unit1	File Geodatabase Table
PTHON)	FWP_yr1_Basal_HSI_750cfs_Unit2	File Geodatabase Table
12 Merge Tables and export to Excel	FWP_yr1_Basal_HS1_750cfs_Unit3	File Geodatabase Table
	FWP_yr1_Basal_HSI_750cfs_Unit4	File Geodatabase Table
	FWP vr1 Basal HSI 750cfs Unit5	File Geodatabase Table

File Geodatabase Table

File Geodatabase Table

File Geodatabase Table

File Geodatabase Table

Once the table is created, create a new field in each raster and call it "Habitat Unit" then use the field calculator tool to determine the total ft² of for each raster.

9 CALCULATE WUA— The CHSI rasters for each flow were grouped by hydraulic zone and a sum total of the pixel values for each zone was calculated. The sum total was then multiplied by the surface area of a single pixel (3' x 3' = 9ft2) to get the WUA for each separate hydraulic zone and for each modeled flow.

Use the formula "Sum * 9" where nine is the dimensions of each individual raster cell (3X3) and Sum is the total number of cells.

Final Product: after calculating all the habitat units, input values for each Evaluation unit based on flow into the GIS Outputs Table of Values

Cut Elli Copy -	er B I	 ⊡ 	- 12 - A	× = ▲ • ≡	= = 6	Alignment	Wrap Text Merge & Ce	nter - \$	eneral ; - % + Number	* 22. 25*	Conditional Formatting	Format as	Normal 2 Bad	2 No Go	ormal 3 add	Norm Neuti	al 4 al	Normal 5 Calculatio	n f	ormal leck Cell		sert Delete	Format T	∑ AutoSum ↓ Fill -	Sort & Filter + S	Find &		
	XV	fx	597595.10	857123																								
A	8	c	D	F	r.	6	CH-	1	-1	ĸ	1.1	м	N	0	p	0	R	5	Ť	- 11	v	w	×	Y.	2		AB	
		5	FWOP				FWP Year	1			FWP Year :	s	1	1	WP Year	15	1	1	WP Year	25			WP Year	50				
	<u> </u>		Habitat T	pe	-		Habitat T	ype	-	Ke	y Habitat T Rinarian	vpe	-	Ke	y Habitat 1 Rigerian	vpe	-	Ke	y Habitat T Binarian	ype	-	Ke	y Habitat	Type				
valuation Unit	Charles .	Dueslag	crub-	Riparian	and all the second	Number of	crub	Riparian		Diversion	Scrub-	Riparian	and the second	Diversion	Scrub	Riparian		Diversion	Scrub-	Riparian	terest teres	Diversion	Scrub-	Riparian	and all the l			
	750 cfs	193205.7	879.179	97344	NA	311537.2	22736.21	96345	NA	311537.7	69792.41	9634	NA.	111537.2	879.17	23587	NA.	311537.2	879.17	235872	NA	311537.2	879.17	9 166108.5	NA			
aluation Unit 1	1850 cfs	37164.55	827.7795	94554	NA	267084.9	22562.09	93555	NA.	267084.9	69381,65	9355	NA	267084.9	834.411	232551	NA	267084.9	834.411	232551	NA	267084.9	834.411	7 163053	NA:			
	5000 cfs	115831	764.7738	88672.5	NA	101367.7	21471.16	87673.5	NA:	101367.7	66701.84	87673.	NA	101367.7	768.9189	224428.5	NA	101367.7	768.9189	224428.5	NA	101367.7	768.918	9 156051	NA.			
aluation Unit 2	1850 cfs	65548.23	22704.84	129685.5	NA	114373.0	31413.51	129683	NA NA	65602.24	54590.09	129685.	NA.	65602.24	23740.6	233014	NA NA	65602.24	22727.11	233230.5	NA	65602.24	23240.6	1 181438	NA			
	5000 cfs	11888.87	20655.75	128790	NA	45088.91	28853.2	128790	NA	45088.91	52543.32	12879	NA	45088.91	20680.3	23233	NA	45088.91	20680.33	232335	NA	45088.91	20680.3	3 180562.5	NA			
	750 cfs	196839.2	72865.38	29655.92	NA	199996.8	147916.8	29655.97	NA	199996.8	369216.2	29655.9	NA	199996.8	72865.38	1016821	NA	199996.8	72865.38	1016821	NA	199996.8	72865.3	8 523238.4	NA.			
auation Unit 3	1850 cfs 5000 cfc	33702.89	7800.34	29157.02	NA.	45986 5	141820.8	29157.02	NA.	45988	353028	29157.0	NA	95257.56	55550 41	971124	NA	96267.56	70279.55	971124	NA	45986 5	70279.5	4635178	NA NA			
	750 cfs	480576.6	170498.7	206497.2	NA	481359.1	238845.9	206497.2	NA	481359.1	445186.3	206497.	2 NA	481359.1	170498.7	1060390	NA	481359.1	170498.7	1060390	NA	481359.1	170498.	7 633443.7	NA			
raluation Unit 4	1850 cfs	361285.3	167336.8	203876.5	NA	379780.6	232424.7	203876.5	NA	379760.6	429199.1	203876.	5 NA	379780.6	167221.8	101837	NA	379780.6	167221.8	1018377	NA	379780.6	167221	611126.5	NA			
	5000 cfs	174374.4	145911.2	199642.9	NA	223459	203420.6	199642.5	NA	223459	377064.7	199642.	NA	223459	145880.5	917896.	NA	223459	145880.5	917896.9	NZA	223459	145880.	5 558769.9	NA			
aluation Unit 5	1850 cfs	163370.6	129830.1	91/14.85	NA NA	253215.6	18/430	55830.7	NA NA	211864.2	41/01/.3	55791	NA NA	211864.2	110406.9	998955	NA	253215.6	110406.5	998955.5	NA	211864.2	110406	9 525658.1	NA.			
	5000 cfs	96459.36	121115.3	91642.85	NA .	215582.2	176722.9	55764.7	NA	215582.2	197344.4	55764.	7 NA	215582.2	103789.1	966636.5	NA	215582.2	103789.3	966616.5	NA	215582.2	103789.	3 509485.1	NA			
	750 cfs	1056181	237846.7	1227707	NA.	1071368	187430	1227662	NA.	1071368	945853	122766	Z NA	1071368	228078.	3473495	NA.	1071368	228078.2	3473495	NA	1071368	228078.	2 2350471	NA			
aluation Unit 6	1850 cfs	918752.1	228337	1199839	NA	953001.6	385630.5	1199839	NA	953001.6	890670.4	119983	9 NA	953001.6	218722	3301888	NA	953001.6	218722.3	3301888	NA	953001.6	218722.	3 2250787	NA			
	250 cfs	196517.6	80896 33	885859 8	NA	197847.2	116857	885859.8	NA	197847.2	230580.4	885859	NA	197847.2	79354 7	136732	NA	197847.2	79354 7	1362329	NA NA	197847.2	73354.7	1124094	NA			
aluation Unit 7	1850 cfs	124249	78543.98	885859.8	NA.	189286.8	113764.5	885859.8	NA.	189286.8	225121.5	885859.	NA	189286.8	77073.5	135187	NA	189286.8	77073.52	1351871	NA	189286.8	77073.5	2 1118865	NA.			
	5000 cfs	83883.57	53690.05	885859.8	NA	145851.9	\$5589.1	885859.8	NA	145851.9	186214.7	885859.	NA.	145851.9	57495.9	1304054	NA	145851.9	52495.9	1304054	NA	145851.9	52495.	9 1094957	NA			
abuation Linit 0	750 cfs	569354.1	328516	1351397	NA:	627476.6	509193.3	1238844	NA.	627476.6	1205309	123854	NA	627476.6	278049.5	4137283	NA	627476.6	278049.5	4137283	NA	627476.6	278049.	5 2685371	NA			
aluation onit a	5000 cfs	175974.3	276220.4	1282781	NA	621838.4	452652.3	1170232	NA	621838.4	1120579	112023	NA NA	621838.4	230896.5	3946357	NA	621838.4	230896.5	3946357	NA	621838.4	230896	8 2555600	NA NA			
	750 cfs	475289.7	254159.2	1611219	NA	480432.7	280980.2	1429319	NA .	480432.7	355856.9	142931	9 NA	480432.7	253929.8	1755005	NA:	480432.7	253929.8	1755005	NA	480432.7	253929.	8 1581665	NA			
aluation Unit 9	1850 cfs	339733	248122.7	1595793	NA	400054.5	273876.7	1414190	NA.	400054.5	345269.5	141419	NA.	400054.5	247989.1	1724891	NA	400054.5	247989.7	1724891	NA	400054.5	247989.	/ 1559044	NA.			
	5000 cfs	228382.9	206035.3	1530084	NA	361362.3	227650.9	1349057	NA	361362.3	286983.1	134905	NA	361362.3	206035.3	1597595	NA:	361362.3	206035.3	1597595	NA	361362.3	206035.	3 1462829	NA .			
		_																										
Cov	erJSH I	New fields t	or FWP Ve	g Sun	mary of Fu	nctions	HStraster	s HSId	ip Layers	GIS HSI	Outputs(20	180518)	GIS HSI	Outputs (20	1720521)	GIS HS	Outputs (20170522)	(4)				1	41				1
									-				La constanta												100 101		_	÷
		8) 0	1	a		62		A 31	0	9 0					_											1	1) 12	-
	1.000 111					-		C. C																		- ACC	and a second second	_

